You can start building your referral downline right now and earn real cash from day one! Click on 'Sign Up' to get your unique referral link and get free $10.00 for 'Sign Up'!!
The rate of GCRs flowing into the solar system is thought to be relatively stable, so researchers suspect that shifts in these long-term isotope records must be driven by a change in the rate at which GCRs reach Earth. The propagation of GCRs to Earth, in turn, depends on the open solar flux, the fraction of the total solar magnetic field that is carried out into the solar system by the solar wind. Open solar flux increases with sunspot number and shifts with the orientation of the heliospheric current sheet, the wavy surface where the Sun's the magnetic field switches polarity from northward to southward. Thus isotope concentration records can serve as a long-scale record of solar activity.
Drawing on two independent ice core records, Owens et al. modeled the open solar flux back to 1610, a period that includes the Maunder Minimum, a 65-year stretch starting in 1650 when astronomers observed hardly any sunspots. They find that during this period, beryllium-10 isotope concentrations continued to oscillate following the roughly 11-year solar cycle, despite the dearth of sunspots. They suggest that the heliospheric current sheet's cyclical behavior didn't change during the period, and hence the regular cycling of the open solar flux, and the changing penetration of galactic cosmic rays, continued.
Source: Physorg
0 komentar:
Komentari,,,